We develop a new framework for trajectory planning on predefined paths, for general N-link manipulators. Different from previous approaches generating open-loop minimum time controllers or pre-tuned motion profiles by time-scaling, we establish analytic algorithms that recover all initial conditions that can be driven to the desirable target set while adhering to environment constraints. More technologically relevant, we characterise families of corresponding safe state-feedback controllers with several desirable properties. A key enabler in our framework is the introduction of a state feedback template, that induces ordering properties between trajectories of the resulting closed-loop system. The proposed structure allows working on the nonlinear system directly in both the analysis and synthesis problems. Both offline computations and online implementation are scalable with respect to the number of links of the manipulator. The results can potentially be used in a series of challenging problems: Numerical experiments on a commercial robotic manipulator demonstrate that efficient online implementation is possible.
translated by 谷歌翻译
本文提出了一种新型的固定时间积分滑动模式控制器,以用于增强物理人类机器人协作。所提出的方法结合了遵守入学控制的外部力量和对整体滑动模式控制(ISMC)不确定性的高度鲁棒性的好处,从而使系统可以在不确定的环境中与人类伴侣合作。首先,在ISMC中应用固定时间滑动表面,以使系统的跟踪误差在固定时间内收敛,无论初始条件如何。然后,将固定的后台控制器(BSP)集成到ISMC中,作为标称控制器,以实现全局固定时间收敛。此外,为了克服奇异性问题,设计并集成到控制器中,这对于实际应用很有用。最后,提出的控制器已被验证,用于具有不确定性和外部力量的两连锁机器人操纵器。结果表明,在跟踪误差和收敛时间的意义上,所提出的控制器是优越的,同时,可以在共享工作区中遵守人类运动。
translated by 谷歌翻译
身体机器人的合作需要严格的安全保证,因为机器人和人类在共享工作区中工作。这封信提出了一个新颖的控制框架,以处理针对人类机器人互动的基于安全至关重要的位置的约束。所提出的方法基于入学控制,指数控制屏障功能(ECBF)和二次计划(QP),以在人与机器人之间的力相互作用期间达到合规性,同时保证安全约束。特别是,入学控制的配方被重写为二阶非线性控制系统,并且人与机器人之间的相互作用力被视为控制输入。通过使用欧洲央行-QP框架作为外部人类力量的补偿器,实时提供了用于入学控制的虚拟力反馈。因此,安全轨迹是从建议的低级控制器进行跟踪的建议的自适应入学控制方案中得出的。拟议方法的创新是,拟议的控制器将使机器人能够自然流动性遵守人类力量,而无需违反任何安全限制,即使在人类外部力量偶然迫使机器人违反约束的情况下。在对两链平面机器人操纵器的仿真研究中,我们的方法的有效性得到了证明。
translated by 谷歌翻译